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Abstract

Respiratory sound classification is an important tool for
remote screening of respiratory-related diseases such as pneu-
monia, asthma, and COVID-19. To facilitate the interpretability
of classification results, especially ones based on deep learning,
many explanation methods have been proposed using prototypes.
However, existing explanation techniques often assume that the
data is non-biased and the prediction results can be explained
by a set of prototypical examples. In this work, we develop a
unified example-based explanation method for selecting both
representative data (prototypes) and outliers (criticisms). In par-
ticular, we propose a novel application of adversarial attacks
to generate an explanation spectrum of data instances via an
iterative fast gradient sign method. Such unified explanation can
avoid over-generalisation and bias by allowing human experts to
assess the model mistakes case by case. We performed a wide
range of quantitative and qualitative evaluations to show that
our approach generates effective and understandable explanation
and is robust with many deep learning models.

Index Terms: Respiratory sound analysis, interpretable methods,
explainable machine learning

1. Introduction

Respiratory sound classification plays an important role in to-
day’s diagnosis systems to assist physicians in identifying adven-
titious sounds [1]. While respiratory diseases such as COVID-19,
bronchial asthma, and chronic obstructive pulmonary disease
are affecting more and more the world population [2, 3], such
computer-aided auscultation of respiratory sounds provides a
remote and non-invasive instrument for early screening of the
diseases. Owing to its promising prospect, respiratory classi-
fication has been studied intensively [4, 5, 6]. Especially, the
success of deep neural networks (DNN5s) in various application
domains also boosts recent studies of respiratory sounds with
better predictive accuracy [1, 2].

However, these advances have also introduced increasing
complex and black-box models that are not explainable by nature,
i. e., their decision boundaries are difficult to understand [7]. As
a result, it is difficult for healthcare practitioners to fully trust
the predictions if no explanation is available, especially when
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many respiratory sound classification results still have modest
performance (e. g., the average score of around 50.16 % on the
ICBHI 2017 dataset [8, 2]). Existing works tried to mitigate
this problem with data augmentation [9] to feed more data to
DNNSs. Nevertheless, the interpretability of a model is crucial in
high-stake domains such as healthcare [10, 11, 12].

Despite many recent advances in explainable artificial intel-
ligence (Al) to mitigate mistakes [13, 14, 15], there are still enor-
mous challenges for explaining respiratory sound classification.
Most existing explainable methods focused on attention mecha-
nisms (e. g., identifying parts of the input that most contributed
to the final model decision) [16, 17]. Other works focused on
example-based explanations using prototypes, which are data
instances representative of a target class [18, 19]. Unlike atten-
tion mechanisms that do not provide actionable insights of the
models, example-based explanations facilitate cognitive human
understanding, in particular case-based reasoning [20], as well
as vast potential to improve the classification quality via nearest
neighbour classifiers [17, 21].

However, existing example-based explainable methods do
not consider bias in data (as is often the case in real-world data).
In fact, the distribution of a model decision cannot be repre-
sented by a set of prototypical examples, but also criticisms —
data instances sampled from regions of the input space not well
captured by the model. These criticism examples often lie close
to the decision boundary of the same target class and often repre-
sent model mistakes (e. g., false positives) or out-of-distribution
data. Indeed, including criticisms into explanations can avoid
over-generalisation and bias by allowing human experts to assess
the misclassified examples and outliers [21, 20].

An adversarial attack is a common tool to uncover model
mistakes and biases by injecting adversarial perturbations into
existing inputs. Such perturbed inputs (i. e., adversarial exam-
ples) are indistinguishable from original inputs by a human,
yet, they are capable of fooling the model to change the target
class [22, 23]. Motivated by adversarial attacks, we develop
a unified solution for example-based explanations using proto-
types and criticisms. Instead of using adversarial perturbations
to change the target class, we consider a novel application of
the adversarial perturbations to generate a spectrum of data in-
stances that include both prototypes and criticisms simultane-
ously. Particularly, we propose an iterative fast gradient sign
method (IFGSM) for generating perturbations, which offer a
natural way of selecting prototypes and criticisms based on the
number of steps of IFGSM.

Our work relates closely to existing works on prototype
learning and criticism learning such as MMD-critic [21] and
ProtoDash [18]. These works started selecting a set of proto-
types first, then separate them into prototypes and criticisms by
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solving a submodular optimisation problem on data distribution.
However, these methods are model-agnostic (explanations are
completely independent of the model) or only indirectly capture
the discriminative nature of a model via a hidden kernel-based
representation of the examples. Unlike these works, we argue
that adversarial attacks can be used to unify example-based ex-
planations, i. e., prototypes at one end and criticisms at the other
end of the explanation spectrum generated by the IFGSM.

To the best of our knowledge, this is a novel application
of adversarial attacks for explainable respiratory sound classifi-
cation. We propose an interpretable and steerable explanation
process for any type of DNNs. In doing so, we overcome the
challenges of interpretability in audio data, which often exhibit
high-order structures in temporal, spatial, and spectral dimen-
sions. Especially, our approach in unifying prototypes and criti-
cisms via adversarial attacks would benefit users in many ways:
(1) the selected prototypes and criticisms can uncover new cases
or outliers about the diseases, and (ii) they can be further anal-
ysed by post-hoc analysis such as attention tensor learning.

Related Work. Most existing approaches to respiratory sound
classification neglect the question why certain patients have
been classified as a target class. Although there exists many
interpretable methods such as regression weights and attention
maps [13, 24], they are difficult to validate in sound data, which
often exhibit high-order structures in temporal, spatial, and spec-
tral domains. We argue that explanations shall be based on a
set of evidential examples, which enable human experts to com-
pare real examples and generalise the problem properties. Some
works tried to do so with prototype layers [25, 17, 26], which,
however, are synthetic and biased, as the model is forced to focus
more on typical examples and ignore extreme cases such as out-
liers and under-sampled data. Our work is a first attempt to unify
example-based explanation for respiratory sound classification
by creating an explanation spectrum of real examples to cover
normal and abnormal characteristics of data.

2. Methodology

Let us define a dataset D = {(X,y)}i=,, where X is the fea-
tures, y denotes the labels, and n is the number of data samples.
In the following, we will firstly give the definitions of proto-
types and criticisms, and then explain the adversarial attacks
that are used in our study. Finally, the whole process of our
example-based explanation will be described.

2.1. Explanation Spectrum

Based on the dataset D, a set of prototypes and criticisms will be
searched out to represent the distribution of the model decision.

Prototypes. A strong DNN model often has small intra-class
variations and relative large inter-class variations in a classifica-
tion task [27]. Ideally, the high-level representations learnt by a
DNN could be split into N groups according to N classes. The
data sample at the centre of each group can be considered as the
most representative example for the corresponding class. How-
ever, it is challenging to have such an ideal data distribution on
real-world data due to a range of reasons, such as noise. There-
fore, the high-level representations may be learnt into more than
N groups. In this context, prototypes are the most representative
examples of each group.

Criticisms. Despite multiple groups for each class, the high-
level representations of real-world data often have outliers [20].
Although the outliers have only a few samples, they should be
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Figure 1: The explanation pipeline with adversarial attacks. The
solid lines are the data flow of real data, the dash lines are for
adversarial (i. e., fake) data, and the dash line with dots is the
explanation procedure with attention.
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still correctly predicted by the model. Nevertheless, it is diffi-
cult to search or learn prototypes to represent only a small part
of data in each class. In this regard, we call the data samples
close to these outliers criticisms. Criticisms can be the out-
liers themselves or generated by the DNN model. In our study,
both prototypes and criticisms are searched data examples for
example-based explanation.

2.2. Adversarial attacks

DNNs have shown their vulnerability to adversarial attacks on
acoustic tasks in our prior studies [22, 23]. Due to the data
distribution of prototypes and criticisms, we have an assumption
that prototypes are the most difficult to be attacked, as they are
close to the centre of the class groups; and the criticisms are
very easy to be attacked, as they are the outliers. In this study,
we search the prototypes and criticisms by the perturbations
generated by white-box attack IFGSM [22] which is stronger
than FGSM due to its [ iterative steps. FGSM calculates the
perturbations based on the gradient of loss function. For a data
sample X}, the perturbation is generated by

AP = clip(e sign(V o, £(0, Xiy ), —,9) (1)

where € is a coefficient that controls the difference between the
perturbation and the original data, £ is the loss function, 6 stands
for the model parameters, y; is the predicted label of X;, and
the perturbation is clipped into an interval [-1,1)], where v is a
positive constant. Finally, the adversarial sample is calculated by
X8 = X+ XP". Another benefit of using adversarial attacks
is that the deeper the model is, the easier it is to attack [22].

2.3. Example-based explanation process

Inspired by the study of [20], adversarial attacks (i. e., [IFGSM)
can be an efficient alternative to MMD-critic [21] for prototype
and criticism selection. Figure 1 shows our approach of selecting
prototypes and criticisms. Specifically, since prototypes are the
most representative examples, prototypes should be still correctly
classified (i.e., y,4, = v) after a certain number of maximum
steps Imaz of FGSM attack. Similarly, because the criticisms
are those samples that are not well captured by the model, they
should be very vulnerable to the IFGSM attack. Therefore,
criticisms tend to be misclassified (i. e., ¥4, # ) after just one
step or very few steps of IFGSM. Notably, the prototypes and
criticisms are selected from the real data, since adversarial data
may lie in a different data distribution, especially for criticisms.

To further verify and explain the selected prototypes and
criticisms, it is essential to know which parts of these samples
can effectively represent the corresponding distributions. We
tackle this challenge by training DNNs with an embedding layer
with dilation and an attention layer. Dilated kernels in the embed-
ding layer focus on preserving the size of feature maps, and the



attention layer aims to learn the potential contribution of each
unit in the prototypes and criticisms [28, 29, 16].

3. Experiments and Results
3.1. Experimental Settings

Data. To verify our proposed approach, our study is based on the
Scientific Challenge database released at the International Con-
ference on Biomedical and Health Informatics (ICBHI) 2017 [8],
which is the largest publicly available acoustic database for res-
piratory sound classification. From seven chest locations of
126 participants, 920 audio waves were recorded with four de-
vices, i.e., one microphone and three stethoscopes. From all
recordings, totally 6 898 respiratory cycles were derived. Each
respiratory cycle was annotated with one of the four classes,
i.e., normal, crackle, wheeze, and both (crackle + wheeze). In
the ICBHI challenge, the database was split into a training set
(60 %) and a test set (40 %). Similar to our prior study [17], the
training set is further split into a train set (70 %) and a validation
set (30 %) for optimising the model hyperparameters. Notably,
the split procedure is subject-independent to avoid the data from
the same person appear in both train and validation set. The
data distribution of the database on the four classes and the three
datasets is described in Table 1.

Table 1: The data distribution of the ICBHI database.

# Train Devel Test >

Normal | 1513 550 1579 3642
Crackle 616 599 649 1864
Wheeze 281 220 385 886
Both 131 232 143 506
S 2541 1601 2756 6898

Evaluation Metrics. We report the unweighted average recall
(UAR) as the generic classification benchmark instead of accu-
racy, as UAR can provide fairer evaluation of the models over
the four classes than accuracy [9, 22] in case of imbalance. It
is also common to distinguish abnormal audio samples (i.e.,
crackles, wheezes, and both) from normal cases. Therefore, the
following standard benchmarks are officially used in the ICBHI
challenge [8]: sensitivity (SE) — the number of true abnormal
cases over the total number of abnormal cases, specificity (SP)
— the ratio of true normal cases over normal cases, and average
score (AS) — the average of SE and SP.

Preprocessing. All audio recordings are re-sampled into 4 kHz.
Since there are confounding noises in most files of the dataset
(e. g., handling noise, speech) [8], we apply a fifth order but-
terworth bandpass filter as the denoising technique. Further,
all respiratory cycles with various durations are unified into 4 s.
Specifically, 4 s of audio signals are randomly chosen in the
training procedure for better flexibility, whereas in the testing
process, such length of audio signals are selected in the middle
of each respiratory cycle for better performance. With the se-
lected audios, we extract the log Mel spectrograms with a sliding
window size of 256, a hop length of 128, and 128 Mel bins.

Model Architecture. In the CNN8 encoder, there are four
convolutional blocks with output channel numbers of 64, 128,
256, and 512, respectively. Each of the convolutional blocks
is composed of two convolutional layers with the kernel size
3 x 3, followed by a local max pooling layer with a kernel size
of 2 x 2. For fair comparison, there are also four convolutional
blocks in the ResNet encoder. Similarly, the output channel
numbers of convolutional blocks are 64, 128, 256, and 512, each
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of which applies the ‘shortcut connections’ to add the identity
mapping with the outputs of two stacked 3 x 3 convolutional
layers [30]. For the classification, we either apply a global max
pooling layer followed by an FC layer or a global attention
pooling layer to learn the contribution of each time-frequency
bin. For the dilated CNNS8 and ResNet, the dilation rates applied
for each convolutional block are 1, 2, 4, and 8, where each
convolutional layer shares the same dilation rate, besides the one
for the ‘shortcut connections’ [30].

Model training. During training, we utilise the ‘Adam’ opti-
miser with an initial learning rate of 0.001 and set the batch size
as 16. Specifically, the learning rate is decayed by a factor of 0.9
at every 200-th iteration for stabilisation. All training processes
are stopped at the 10 000-th iteration.

3.2. End-to-end Comparison with SOTA Systems

We compare our performance with those of all state-of-the-art
(SOTA) approaches on the official test set. Please note that, the
studies using a different test set are not comparable. In Table 2,
our study is mainly compared with both hand-crafted features
on classic machine learning classifiers [31, 4, 32] and time-
frequency representations on deep neural networks[33, 34, 17].

Our approach outperforms all state-of-the-art methods on the
test set when both AS and UAR are employed for evaluation. In
particular, the CNN8 with dilation obtains 52.89 % AS, which
is significantly (p < 0.05 in a one-tailed z-test) better than
the 50.37 % in [17]. Moreover, the ResNet with dilation and
attention achieves 46.82 % UAR, which is significantly (p <
0.001 in a one-tailed z-test) better than the 36.16 % UAR in [17].
Further, our best models have better performance on SE, which
is quite important in clinical practice. Both of our best models
have dilated convolutional kernels, indicating dilated kernels can
improve performance of local max pooling.

Table 2: Classification performance [%] comparison with the
SOTA approaches on the test set.

SE SP AS UAR
MFCC-HMM-GMM [31] - - 39.56 -
MFCC-Decision Tree [4] 20.81 78.05 49.43 -
STFT-Wavelet-SVM [32] - - 4986 -
STFT-Wavelet-BiResNet [33] 31.12  69.20 50.16 -
STFT-ResNet-Attention [34] 17.84 8125 4955 -
LogMel-CNN8-Prototype [17]  27.78 7296 5037 36.16
Ours (CNN8-Dilation) 3585 69.92 52.89 40.26
Ours (ResNet-Dilation-Att) 51.83 50.22 51.02 46.82

3.3. Ablation Study

We evaluate the robustness of our prototype and criticism selec-
tion approach against various DNN models: CNN8 and ResNet.
The performance of dilation and attention on the two CNN mod-
els are compared in Table 3. When comparing the UAR and
AS values inside the two types of models, the performance of
dilation and attention is better than that of the models with local
max pooling layers in some cases. When we compare the two
types of models, ResNet mostly outperforms CNNS§ probably
due to the residual blocks in ResNet. Interestingly, high UAR
values do not always lead to high AS values. We think this is
highly related to the class-imbalance nature.

3.4. Sensitivity Analysis

We analyse the number of prototypes under different iteration
steps of IFGSM and number of criticisms under different € values



Table 3: The ablation study of the model performance [%] on
residual block, dilation, and attention.

Four-class Binary
Dev | Test Dev Test
UAR | UAR AS SE SP AS
CNNS8[17] - 4036 52.99| 39.42 59.72 49.57
CNNS8-ALtt 38.51| 4275 49.56| 43.76 49.65 46.70
CNNS8-Dila 34.75| 4026 53.27| 3585 69.92 52.89
CNNB8-Dila-Att 41.55| 4545 50.83| 49.62 46.93 48.27
ResNet 41.69 | 4533 54.48| 43.67 58.01 50.84
ResNet-Att 37.59| 43.62 47.66| 39.51 6276 51.13
ResNet-Dila 37.20| 4339 52.65| 46.73 4459 45.66
ResNet-Dila-Att  39.51 | 46.82 52.92| 51.83 50.22 51.02
40
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Figure 2: Analysis of the number of prototypes and criticisms.

when I = 1 in Figure 2 based on the developed dilated ResNet
with the attention mechanism. In Figure 2 (a), the number of
prototypes for each class is decreasing when IFGSM keeps iter-
ating, indicating the generated adversarial data is stronger with
larger I values. In each class, the number of criticisms is also
decreasing when € decreases (i. e., adversarial data is becoming
more similar to real data). Setting appropriate I and e is helpful
for searching effective prototypes.

3.5. Visualisation of Prototypes and Criticisms

The log Mel spectrograms of the selected prototypes and crit-
icisms are depicted in Figure 3. The four prototypes are rep-
resentative sounds in the four classes. Particularly, the normal
prototype sound is regular breathing in Figure 3 (a). As the
crackle sounds are explosive, short-duration transient sounds,
they can have a big range of magnitude and frequency content
[35]. The selected prototype has the consistent characteristics on
the duration and frequency Figure 3 (b). Compared to crackle
sounds, wheezes have relatively long duration [35]. We can see
the wheeze prototype has longer duration than the crackle one for
each respiratory cycle Figure 3 (c). The “both” class (Figure 3
(d)) is a combination of crackle and wheeze, therefore, we can
only see it is different from the normal one.

When comparing criticisms and prototypes, we can see that
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Figure 3: Visualisation of prototypes and criticisms, as well as
their contribution parts for respiratory sound classification. X-
axis: Time steps, Y-axis: Mel frequency bins. The first column
contains the prototypes, the second column shows the contribu-
tion parts of prototypes, the third shows the criticisms, and the
final one shows the criticisms’ contribution parts.

the typical characteristics of the sounds only appear in part of
the whole waveform, especially normal, crackle, and wheeze.
We think this is also the reason that the criticisms are easy to
be misclassified in a single iteration step of IFGSM. We also
project the attention heat maps to the prototypes and criticisms
with a threshold at the attentions tensor’ middle values. The
time-frequency bins of a prototype/criticism are visualised when
the corresponding bin in the attention heat map is larger than the
threshold. We can see that, the respiratory cycles are preserved
in the projections of normal and wheeze prototype sounds. In the
projection of the crackle prototype, the non-respiratory part is
reserved, probably because the respiratory duration is too short.
For the projection of criticisms, the respiratory parts in all four
classes are highlighted. Different from the crackle prototype,
the non-respiratory part is learnt with low coefficients in the
attention heat-map of criticism. We think this is caused by fewer
high frequency sounds in the crackle criticism.

4. Conclusion

Existing explainable classification methods do not often consider
bias in data. This paper developed a unified example-based expla-
nation for respiratory sound classification by selecting prototypes
and criticisms via an iterative fast gradient sign method. Not
only applicable for any deep neural networks, our explanations
can assist physicians in exploring extreme cases and making
informed decisions. Experiments show that our approach can
outperform the baselines, and achieve average score of 52.89 %
and unweighted average recall of 46.82 %. In future work, we
will explore the effect of adversarial attacks by analysing the
attention map of adversarial data. We also plan to explore other
types of explanations such as counterfactuals [36].
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